Syllabus – Microelectronics Manufacturing and the Environment

Ara Philipossian

Department of Chemical & Environmental Engineering

CHEE, MSE & ECE 415 & 515

© 2016
Course Description

- This course will focus on the presentation of basic semiconductor fabrication unit operations as they relate to:
 - Theory of operation
 - Materials
 - Equipment
 - Fabrication processes
 - Key environmental impacts and challenges

- Prerequisites:
 - None
Instructor Information

- **Instructor:**
 - Name: Ara Philipossian
 - Office: Electrical & Computer Engineering Building, Room 223
 - Phone: 520 621 6101
 - E-Mail: ara@engr.arizona.edu

- **Office Hours:**
 - Wednesdays 2 to 4 PM (No office hours this week).
 - There will be no TA for this course
 - Other times by appointment only (send me an e-mail please)
 - Office hours are subject to change
Method of Instruction

• Class location: McClelland Hall – No. 133 – Mondays 3:30 to 5:50 PM

• Course will be delivered in the form of traditional lectures as well as instructional videos:
 – Prof. Ara Philipossian UA – Lectures
 – Prof. Farhang Shadman UA – Video
 – Dr. Michael Goldstein Intel – Video
 – Prof. Srini Raghavan UA – Video
 – Dr. Robert Meagley Intel – Video
 – Dr. Larry Larsen Sematech – Video

• Self-discipline will be paramount in order to keep up with the pace and the volume (and format) of information delivered
Method of Instruction (continued)

- Homework:
 - Ten or so assignments

- Exams:
 - Mid-Term No. 1
 - Mid-Term No. 2

- Group Project Proposal (Written and Oral):
 - Please see the next 5 slides
Project Proposal

• ORAL PRESENTATION AND SUBMISSION DEADLINE
 – Monday May 2, 2016
 – Deliver a hardcopy to Ara Philipossian in the class
 – Present to the entire class (no more than 10 minutes and 9 PPT slides)

• WRITTEN PROPOSAL LENGTH
 – No more than 14 pages including figures and list of references
 – Keep it crisp and to the point
 – Font size: 11
 – Spacing: Double
MAXIMUM OF 5 STUDENTS PER GROUP

FOCUS AREAS
- Process consumables replacement
- Process consumables reduction
- Process consumables re-use

TOPICS TO CHOOSE FROM
- Electroplating of copper
- CMP of copper or dielectrics
- CMP of Shallow Trench Isolation
- Thermal oxidation
- LPCVD of dielectrics
- LPCVD of tungsten
- Wet cleaning and surface preparation
- Dry cleaning & surface preparation
- Rinsing
- Drying
- Post-CMP cleaning
• TOPICS TO CHOOSE FROM (CONTINUED)
 – Wet etching of silicon nitride or silicon dioxide
 – Dry etching of silicon dioxide
 – PVD of copper
 – Plasma etching
 – Lithography

• RESEARCH OBJECTIVE
 – What problem are you solving?
 – What opportunities are you suggesting to be exploited?
 – What technology or usage issues motivate this problem?
 – What has been done in this area in the past?
 – How does your proposed work differ from what’s already been done by other researchers?
 – What is your research hypothesis?
 – How will you verify that hypothesis?
 – What is the potential impact on industry practice if the hypothesis is verified?
Project Proposal (continued)

• RELATIONSHIP TO OTHER RESEARCH OR PRACTICE
 – What similar research to this proposal is being conducted by other universities?
 – How does this proposal differ from that research

• RESEARCH POTENTIAL IMPACT
 – What concrete results are expected?
 – How could those results be put into practice?
 – How could an IC manufacturer benefit from the completion of this work?
 – What technological advances must happen for that benefit to be realized?

• RESEARCH PLAN (ASSUME A 2-YEAR DURATION)
 – Deliverables
 – Timeline
 – Technical tradeoffs that may have to be made
 – Risks in this research and how they will be managed
Project Proposal (continued)

• BIBLIOGRAPHY
 – Roughly 10 publications relating to state-of-the-art and your proposed work
 – Attach hardcopies of all referenced publications and submit it with your report (note that these pages are in addition to the 14 pages containing your report)

• GRADING
 – Your grade will be based on the following:
 • Creativity
 • Originality
 • Aesthetics & professionalism of the report
 • Impact to industry
 • Completeness & relevance of previous work cited in the bibliography and your ability to structure your proposal recognizing what’s been done before by other researchers
 • Likelihood of success of your proposal
YOUR Final Grade

- Homework: ZERO – I will not be collecting or grading any of the HWs. I will post all solutions on D2L. Exams will be based on HW.

- Mid-Term Exam 1: 30%
- Mid-Term Exam 2: 40%
- Proposal: 30%
Facts About This Course

• Total of 166 students have taken this course under Prof. Philipossian:
 - A = 45 %
 - B = 25 %
 - C = 20 %
 - D, E and DROP = 10 %

• Evaluation of the Instructor and the course over the past 7 years:
 - Instructor’s teaching effectiveness = 4.55 / 5.00
 - Overall rating of course = 4.25 / 5.00
 - How much learned = 4.15 / 5.00
 - Usefulness of lectures & discussions = 4.50 / 5.00
 - Usefulness of homework = 4.10 / 5.00
 - Treated with respect = 4.80 / 5.00
 - Difficulty level = 4.00 / 5.00
Books

• **Required Textbook:**

• **Recommended Books:**

Groundrules

• There will be no make-up exams whatsoever

• Turn off all mobile devices in the classroom

• **Lectures start promptly at 3:30 PM and end at 5:50 PM**

 – Please be on time

 – Students arriving after 3:35 PM are requested to wait outside the classroom. Late students will be admitted into the classroom when there is a natural break in the lecture (usually around 4:45 PM).

 – There is an exception for 2 students due to class overlap!

 – Being 5 minutes late means:
 • (5 minutes) x (26 students + 1 instructor)
 • More than 2 hours of other people’s time wasted

 – If you miss a lecture, please do not ask me for a tutorial on the subjects covered during the lecture

• Complete your reading assignment prior to each lecture
Groundrules (continued)

• Do not seek the instructors’ help in solving homework problems if you have not given the problem your best shot.

• You must show the instructor in writing your logic and deductive reasoning in attempting to solve a problem before the instructor proceeds to help you
Course Structure (subject to change)

- Lecture No. 1 by Ara Philipossian ... January 25
 - Review of the Syllabus
 - Introduction to Device Fabrication
 - Introduction to Design for the Environment
 - Silicon Wafer Manufacturing – Part 1
 - Silicon Wafer Manufacturing – Part 2 (Please watch video on D2L ASAP)
Course Structure

- Lecture No. 2 by Ara Philipossian … February 1
 - Impurity Diffusion
 - Thermal Oxidation

- Lecture No. 3 by Ara Philipossian … February 8
 - Thermal oxidation (continued)
 - Dielectric Deposition

- Note: There will be NO CLASS on February 15th due to a school holiday – Please watch the videos mentioned in the section re: Lecture No.4 (next page)!
Course Structure

- Lecture No. 4 by Ara Philipossian, Srini Raghavan and Larry Larsen … February 22
 - Low k Dielectrics
 - Wet Etching, Cleaning and Surface Preparation
 - Drying (by Srini Raghavan – Please watch video on D2L ASAP)
 - Ion Implantation (by Larry Larson – Please watch video on D2L ASAP)
 - You need to download SRIM in order to solve the Implantation HW problems.

- Review Lecture (No. 5) by Ara Philipossian… February 29

- Review Lecture (No. 6) by Ara Philipossian … March 7

 Mid-Term Exam 1 … March 21 (Duration = 2 Hours)
Course Structure

• Lecture No. 7 by Ara Philipossian … March 28
 – Chemical Mechanical Planarization - Part 1

• Lecture No. 8 by Ara Philipossian … April 4
 – Chemical Mechanical Planarization - Part 2

• Lecture No. 9 by Farhang Shadman, Michael Goldstein and Robert Meagley … April 11 (Watch Video on D2L – No Class)
 – Ultra-Pure Water Production, Use and Re-Use
 – Rinsing
 – Photolithography
 – Metallization
Course Structure

- Review Lecture (No. 10) by Ara Philipossian … April 18
- Review Lecture (No. 11) by Ara Philipossian … April 25
- Proposal Presentations … May 2

Mid-Term Exam 2 … May 9 at 3:30 PM (Duration = 2 Hours)